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Abstract - Grid Refinement Method has been developed to solve linear systems generated from partial differential equations. 

Simulation of a geological problem by using the Grid Refinement Method along with iterative methods is presented in the paper. 

Accuracy and efficiency of the Grid Refinement Method is investigated for comparison with the solutions obtained by uniform grid 

approach.   
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——————————   ◆  —————————— 

1. INTRODUCTION 

 
       Grid Refinement methods [8, 9] have been used to solve 

large linear systems developed from partial differential 

equations. In this research, we study a problem that arises from 

the traveling of groundwater flow [1, 2] and the method to 

estimate how fast the contaminant disperses around the 

sinkhole in geological sciences. Suppose there is a rectangular 

domain where the boundary conditions are given and the initial 

contamination value at the sinkhole is also known, we would 

like to know the values in the region around the sinkhole. 

Researchers have been using the model “MODFLOW” to solve 

the problem by a two-step procedure. The major drawback of 

this two-step method is the computational time and the 

inconvenience of the interpolation process due to the two linear 

systems generated from procedure, as well as considerably 

more computational time to solve the systems.  

 

     Grid Refinement methods improve the above method by 

generating only one system of linear equations, which contains 

the information of all points that we are interested in, with the 

consideration of the treatments of the interface boundary 

points. In the existing two-step scheme, the approximations for 

interface boundary points are obtained by the interpolation 

technique, while the grid refinement method uses a simple 

“modified” finite difference scheme. 

 

 

 

 

 

 

2. GRID REFINEMENT METHOD 

 
     In this chapter, we describe a grid refinement method for 

solving a partial differential equation of the form:  

   (2.1) 

where A,C,D,E,F are functions of x and y, with Dirichlet 

boundary conditions[11] on a rectangular region. 

      The basic idea of the grid refinement method is to 

decompose the original spatial domain into several sub-

domains. For simplicity, we describe the method using two 

subdomains, namely interested domain and less interested 

domain. The coarse grids are put on the less interested 

domain; therefore it is also referred to as coarse grid 

domain. And the fine grids are put on the interested 

domain which is then also referred to as fine grid domain. 

Once the grids are placed, one linear system is generated. 

Then we are able to solve both subdomains simultaneously. 

We note that the fine grid subdomain could be formed in a 

rectangular shape or in other shapes, such as L shape or 

circular shape. In this research, we focus on rectangular 

shape. We also note that the fine grid subdomain could be 

placed anywhere within the original region to fit physical 

needs; again for simplicity, we assume in this research that 

the fine-grid subdomain is located in the center of the 

region, see Figure 2.1. 
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                           Figure 2.1 

 

      Once the linear system is generated according to the above 

grid pattern, we proceed with the solving the linear system in 

iterative methods*6, 7+, such as Richardson’s Method*10+, Jacobi 

Method[3] and Gauss-Seidel [4]with  Successive Over 

Relaxation Method[5]. The iterative algorithm produces a 

sequence of approximations {x(i)} to the exact solution of the 

linear system (2.1), it is necessary to have a stopping procedure 

to determine whether the approximation is accurate enough to 

terminate the iterative procedure. In this paper, if the exact 

solution is known, then it would be reasonable to accept the 

approximate solution x(i) if 

                   (2.2) 

where is a preset small tolerance, say 10-6. We call the test 

(2.2) an exact stopping test. 

 

3. NUMERICAL EXPERIMENT 

 

       We now attempt to solve a geology problem which is 

concerned with the groundwater flow and transport models. 

For the flow model which is referred to as MODFLOW [1, 2] is 

governed by the partial differential equation:    

                        (3.1) 

Over the region Ω= *0.5, 20.5+ × *0.5, 20.5+ with zero boundary 

conditions. However, there is a point sink source in the center 

of Ω. This point sink source can be treated as a water pollutant 

and the governing partial differential equation describes the 

diffusion of the water polluted and the concentration of the 

pollutant region is around the center. Therefore, we define the 

refined grid domain to be [8.5, 12.5] × [8.5, 12.5], which is the 

area of most interest that governs the spread of contamination 

of the pollutant. 

      It is set q =  10 at the central point as the sink source in our 

experiments. 

     The following table shows the computational time to obtain 

an accuracy of 10-6 to the linear system generated from the PDE 

using finite difference scheme with the uniform grid and with 

grid refinement scheme. Since we do not have the exact solution 

available, the stopping procedure (2.2) is used. In order to check 

the accuracy, we use the uniform grid as our benchmark 

solution. The computational time for the uniform grid scheme is 

ranging 3 to12 times more than the two-layer scheme. 

 

Table 3.1 Computational time comparison for Geology 

Simulation 1 

 

H h Size 

Matrix 

Gen. Time 

 

Iter. 

Time 

Total Time 

1 1/2 417 1.0750 0.0220 1.0970 

 1/2 1521 3.7960 0.0780 3.8740 

      

1 1/4 625 1.6110 0.0340 1.6450 

1/2 1/4 1729 4.3420 0.0900 4.4320 

 1/4 6241 17.3020 0.6010 17.9030 

      

1 1/5 777 2.4690 0.3880 2.8570 

 1/5 9801 26.4450 1.2300 27.6750 

      

1 1/8 1425 3.6860 0.0940 3.7800 

1/2 1/8 2529 6.5050 0.1880 6.6930 

 1/8 25281 69.2490 5.3770 74.6260 

      

1 1/10 2017 5.7210 0.1750 5.8960 

1/5 1/10 11041 30.9920 1.5310 32.5230 

 1/10 39601 118.1860 9.6140 127.8000 

      

1 1/16 4561 11.6850 0.5180 12.2030 

1/2 1/16 5665 14.7190 0.6370 15.3560 

 1/16 101761 369.4310 43.1830 412.6140 

      

1/5 1/20 15921 47.7000 3.1690 50.8690 

1/10 1/20 44481 202.1200 15.9320 218.0520 

 1/20 159201 669.3290 80.3290 749.6580 

 

 

Figures 3.1 & 3.2 show the contour graph of the 

solution over the entire region from the uniform grid with 

grid size h =1/5 and from two-layer scheme with H =1 and h 

=1/5, respectively.  Both contour figures are very similar. 

We also extract the contour plots over the interested area in 

Figure 3.3 and Figure 3.4 for the uniform grid and two-

layer scheme respectively. We notice that there is a little bit 

difference, but in general they are very similar. This 

similarity can be confirmed by the 3-D plots of the solution 

over the interested region for the uniform grid and two-
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layer scheme given in Figure 3.5 and Figure 3.6 

respectively. 

 
Figure 3.1 Contour figure of the entire region [0.5, 20.5] (H=1/5) 

 

 
Figure 3.2 Contour figure of the entire region [0.5, 20.5] (H=1, 

h=1/5) 

 
Figure 3.3 Contour figure of interested region [8.5, 12.5] (H=1/5)  

 

 

 
Figure 3.4 Contour figure of interested region [8.5, 12.5] 

(H=1, h=1/5) 

 

 

 

 

 
 

Figure 3.5 

 3-D figure of interested region [8.5, 12.5] 

 (H=1/5) 

 

 
Figure 3.6 3-D figure of interested region  

[8.5, 12.5] (H=1, h=1/5) 
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4 CONCLUSIONS 
 

In this paper, we have discussed the application of a grid 

refinement scheme for solving a partial differential equation 

over a rectangular domain with Dirichlet boundary conditions. 

A hypothetical geology problem is also conducted. The 

solutions obtained by the grid refinement scheme are very 

comparable to the solutions obtained by the uniform grid with a 

huge efficiency improvement. 
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